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The problems to be investigated below occur during the solution of problems on the cool- 
ing of contact reactors of chemical production, the diversion and subsequent utilization of 
heat from furnaces with granular layers by means of inserting different cooling bodies and 
inserts, within apparatus, in the thermal and diffusion treatment of articles in a fixed or 
slightly fluidized granular layer, in the problem of corrosion resistance of submerged in- 
serts, etc. In the majority of situations of practical importance, the linear scale L of 
the body is much greater than the characteristic structural scale I of the layer, and in 
this case it is natural to use a continual description of the heat- or mass-transfer pro- 
cesses in a disperse mixture surrounding the body, by considering it as some homogeneous con- 
tinuous medium (or as a system of several coexisting interacting media) with its own effec- 
tive thermophysical and diffusion characteristics. 

The macroscopic transfer equations in such media are derived either phenomenologically 
or on the basis of averaging local transfer equations, which are valid in the individual mix- 
ture phases, over a representative small physical volume or time interval [1-3], or over an 
ensemble of configurations of systems of disperse phase particles [4]. Equations from [4] 
are used below that are true when the direct heat or mass transfer of impurity over the 
contacts of contiguous particles is inessential. The assumption mentioned is always valid 
for mass transfer (including even a capillary-porous media) and is almost true for heat trans- 
fer in infiltrable granular layers. It is assumed that there are no possible heat or mass 
sources in the medium; this assumption is quite rough only when a catalytic reaction with a 
large thermal effect proceeding in an external diffusion or transition domain holds [5] and 
self-heating or self-cooling of the catalyst particles is essential because of the inadequate 
intensity of the interphasal heat transfer. The assumptions made permit description of the 
stationary transfer process within the framework of a single-phase dispersion model. Let us 
note that such a model can be used formally in a number of situations, even in cases when a 
two-phase model is necessary in the strict sense [6]. 

An assumption about the insignificant influence of the contact conduction and the inequal- 
ity L >> I affords a possibility of neglecting in a first approximation the existence of a thin 
layer at the surface of the submerged body, whose mean properties differ from the properties 
of the dispersed medium far from the body. 

w Statement of the Problem 

Under the assumption mentioned above, the equation of stationary convective heat trans- 
fer in a mixture with a fixed dispersed phase can be written in the form [4] 

Co(uV)T = --vq - -  CoV(l"V'>, ( l . l )  

where Co is the specific heat of unit volume of the fluid being filtered; u = cv is the rate 
of filtration; the prime denotes fluctuation in the temperature T and the true field velocity 
V in the gaps between particles relative to their mean values T and v (the layer porosity ~ is 
considered independent of the coordinates). 

The quantity q is the mean heat flux in the system which is not related to the fluid 

fluctuations, 

q =--XVT, % = %0F( ~, ~r'~0), (1.2) 

where % is the effective thermal conductivity of the fluid-filled layer at u = 0, where there 
are theoretical (see [7], say) and numerous empirical [8] representations for the function F 
dependent on E and on %1/lo (the ratio between the thermal eonductivities of the particle 
material and the fluid). 

~bscow. Translated from Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, No. 5, pp. 
94-102, September-October, 1977. Original article submitted June 21, 1976. 
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The last member in the right side of (i.i) describes the convective heat dispersion in 
the intersected pore space of the granular layer. The tensor A* of the corresponding effec- 
tive coefficients of thermal conductivity has an axis of symmetry coincident in direction 
with the local rate of filtration [9], where the relationship [i0] 

Coy (T'V') = V (A*VT), ~J = 2k~CoZU (1.3)  

can be written for the principal values of this tensor. 

Theoretical values of the coefficients of convective dispersion k i are evaluated in [i0] 
on the basis of a Markov model of uncorrelated sequential displacements (k: = 0.76~ k2 = 0.19) 
and agree fairly with experiment (kl = 0.7-0.8, k2 = 0.1-0.3). 

From (1.1)-(1.3) we obtain 

Co(uV)~ =: V(AVT), i = A* + ZI, ( 1 . 4 )  

where A is the tensor of the effective coefficients of thermal conductivity due to both molecu- 
lar heat transfer and convective dispersion. (The presence of random local inhomogeneities 
in the granular layer results in the appearance of additional convective dispersion [ii], 
which for simplicity is not taken into account below. 

The rate of filtration is considered known from the solution of the appropriate hydro- 
dynamic problem. Assuming the Darcy law valid (although in approximate form), we see that 
the distribution of u near the submerged body is actually obtained from an analysis of the 
problem of its potential flow. 

Finally, we consider the temperature distribution or the normal heat-flux component given 
on the body surface; far from the body the temperature should agree with the temperature T~ 
of the stream flowing in at a velocity u~ in the coordinate system coupled to the body. 

In general respects, the problem formulation mentioned was discussed earlier in [12], 
where results referring to heat elimination from a cylinder and sphere whose surface was 
maintained at a constant temperature were also presented. 

w Transformation of the Convective Heat-Conduction Equation 

Since the tensor A is diagonal in coordinate systems with one of the axes directed along 
the local filtration rate, it is meaningful to analyze (1.4) in one such system. The system 
coupled to the isopotential surfaces T = const and stream surfaces ~ = const introduced by 
Boussinesq is most natural for plane and axisymmetric meridian flows. The transformation to 
Boussinesq variables is also useful in the respect that it simplifies the convective part of 
(1.4) substantially since the inhomogeneous flow outside the body being streamlined is actu- 
ally converted to a homogeneous flow in a plane with a slit. 

Introducing the dimensionless variables and parameters 

i ~ [ _  I _ ic~]  U=}_L.  = r 

t f  (2.1) 
C O u ~ L 4k i C O zL~ 

Pe = . - -~ - - ,  7~ --  

and  taking account of (1.3) we obtain the equation 

O~ Pe 

in place of (1.4), where the values j = 0 and j = i, respectively, correspond to the plane and 
axisymmetric flows in (2.1) and (2.2). 

Equation (2.2) is equivalent to (1.4) in the domain U # 0, i.e., everywhere with the ex- 
ception of the stagnant frontal and root points on the body surface. O~her equations could 
be obtained from (1.4) in place of (2.2) in a small neighborhood of these points and their 
solutions could then be merged with the solution of (2.2). However, such aprocedure is physi- 
cally meaningless in the case under consideration if the size of these singular domains is 
commensurate with or less than l, so that the dispersion model used, which results in (1.4), 
will itself become meaningless. 

Therefore, (2.2) is analyzed in a domain with deleted stagnant points, and the boundary 
conditions should correspondingly be given on the body surface. The problem obtained can be 
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considered as a Cauchy problem for the elliptic equation (2.2), which is incorrect in the 
classical (Hadamard) sense, but becomes correct upon narrowing the class of solutions be- 
cause of the imposition of additional conditions (Tikhonov class of correctness). Boundary- 
value problems of this kind for the Helmholtz equation, to which (2.2) can be reduced, have 
been considered in [13], where it has been shown that the boundedness condition 

must be used as the additional condition assuring uniqueness of the solution of problems 
with an open boundary, where the summation is over the two singular (stagnant) points and the 
integration is over circular contours of small radius around these points. In substance, 
this condition requires =he absence of nonintegrable singularities at the points mentioned. 

The solution of (2.2) for sufficiently general conditions on the body surface is quite 
problematical. 0nly the exact solution of the second boundary-value problem for a cylinder 
[14] and the possibility of reducing the solution of the plane first boundary-value problem 
[15] to the solution of an analogous problem for a plate [16] if there is no convective dis- 
persion are known. In the general case it is expedient to use the method of perturbations 
[17], associated with the cons=ruction of a decomposition of the desired solution in some 
system of congruent functions {~n(Pe)} which tends to zero as Pe + 0 or Pe § ~. These limit 
decompositions can be convergent for Pe ~ ~ (when =hey converge to the exact solutions) or 
divergent (when they are asymptotic expansions of the solutions). We deal with problems 
about singular perturbations in both limit situations. As Pe -~ ~ this is associated with 
the fact that there is a small parameter in (2.2) in the highest derivatives. As Pe + 0, the 
singular nature of the perturbations is due to the fact that the asymptotic expansion is non- 
uniform in the sense of [17] in the neighborhood of the infinitely remote point and there is 
the need to construct an additional internal asymptotic expansion, which would then merge 
with the external expansion. 

w Solution of the Problem for Pe << i 

In this case the members describing the convective dispersion in (2.2) contain two small 
factors Pe and I/L and can be omitted so that the tensor A is global and its eigenvalue equals 

Let us first examine the problem of a cylinder when (1.4) can be written in the form 

Pe(Uv)~ = V~, (3.1) 

where the operator V is defined in the space p of dimensionless coordinates. For large 0 we 
introduce the internal variables 

R = Pep, X--RcosS, Y= Rsin0 (3.2) 

in the usual manner. 

Using (3.2) in (3.1), we obtain an equation for T in the variables R and 8 (or X and Y) 
which contains Pe as a small parameter. It is natural to seek the solution in the form 

~~176 6 o i, lira &(Pe)--0. (3.3) 

Limiting ourselves to the first member of the series (3.3) we obtain an equation of con- 
vective transfer in a homogeneous stream for T(~ 

~(0) a2~(0) ~.~(0~ (3.4) 
#_I" -- a~ ' n- #}-=' 

whose bounded solution, which satisfies the known radiation condition and is written in the 
0 and 8 variables, has the form 

�9 where K o  (x) is the Macdonald function. 

The monomial external expansion is determined as the solution of the Laplace equation 
which follows from (3.1) as Pe -~ 0. For the Dirichlet problem [the temperature distribution 
on the cylinder surface To (8) is given] this solution is written in the form 

6 6 8  
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~c(o)=_~__l_ = t ~ p j a ~  ~{~1 ~(a~cosiO-t-.b~sin~O)@C~ln@, (3.6) 

where a i and b i are Fourier coefficients of the function T0(O). 

For the Neumann problem [the density distribution of the normal heat flux component Q(e) 
is given], we have 

~(0) == ~A~ In -~-~ _ ~ f ~, P J (AicosiO__B~siniO)_C~, (3.7) 

where A i and B i are the Fourier coefficients of the function Q(0). 

The arbitrary constants CI and C2 or C~ and C3 in (3.5)-(3.7) are determined from the 
condition or merger of the asymptotic expansions. By using the asymptotic representation of 
the Macdonald function, we obtain for the first boundary-value problem 

( > Cl = C2 = @-- WOO II~--] ~'7 (3.8) 

and for the second boundary-value problem 

4 
CI=@, C~ = ~--i~ In ~ ~, (3.9) 

where y is the Euler constant. Finally, (3.8) and (3.9) determine the solution of both prob- 
lems which ,"-an be represented, in the usual way, in the form of composite asymptotic expansions 

i = l  

A conception of the accuracy of the asymptotic solutions (3.10)and (3.11)canbe obtained 
from Fig. i, where we compare the local values of the Nusse!t number at different points on the cylin- 
der surface, which follows from the exact solution of the second boundary-value problem in 
and from (3.11) (solid and dashed curves, respectively) for two values of the Peclet number 
for a constant heat-flux density on the cylinder surface (Q =_i const); the arrow shows the 
freest ream direction. 

Let us now consider the analogous problem for a sphere. As before, the main equation 
has the fo•n (3.1), the internal variables are introduced analogously =o (3.2), and the solu- 
tion is also expanded in the form of the series (3.3). Solving the equation for the first 
member of this series, which replaces (3.4) in this case, we obtain in place of (3.5) 
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�9 > 1 
~(0) = "Go + ~ e x p  p ( t  - -  cos  O) . 

After evaluation, we obtain in place of (3.6) and (3.7), respectively, 

1 ! 
~(o) __ o- ~ ~2 ~ , ,~Y,~  (o) + c ,  ~ - -V  ' i = 2~ + .~; 

"= m = t  

~(o)= A.o 1 ~ ~ C~, 
�9 P (i  

+ 7) p'+~ m-~_i A,mY,m (8) =- 
i = l  

(3.12) 

( 3 . 1 3 )  

( 3 . 1 4 )  

where Yim(0) is the m-th spherical function of i-th order, and ~im and Aim are coefficients 
of the expansions of the functions To(0) and Q(O) in spherical functions. 

As before, merging the internal expansion (3.12) with the external expansion (3.13) or 
(3.14) permits finding the arbitrary constants in (3.12)-(3.14). The appropriate composite 
asymptotic expansions have the form 

M 

~ a~raYim (0) --' "c~ 1 - -  - -  exp  - -  .-5"- P 
m = l  P 

.~(o) _ ?0exp[ Pe -2- ] p (1 - -  cos 0)] - -  

2 _ _  1 Ai.~Y~m (0) -~ ~ ,  
~=1 (1 ~- f) p~-i  m=l 

where the parameter M is defined in (3.13). 

w Solution of Problems for Pe + ~ 

In this case the convective heat dispersion can be quite substantial (the tensor h dif- 
fers from the global tensor) and it is convenient to use (2.2). By using the Poincar~--Light- 
hill-Ho method [17] and introducing the small parameter ~ = Pe-~ 2, we represent the desired 
function T and the independent variables ~ and ~ in the form 

~ 4  '~), r = ~ + ~ ~e~ (~, ~), 
";=o ~=t (4.1) 

~ r  
i = l  

The transformation from ~, ~ to ~, n in (4.1) is the result of the combined utilization 
of perturbed coordinates and boundary-layer methods. In fact, these transformations corre- 
spond not only to the shear strain of the coordinate grid, but also to the typical stretching 
of the "transverse" coordinate ~ in the boundary layer. Success in applying (4.1) is hence 
usually related to how successfully the variables ~, ~ have been chosen. 

The quantities # and ~ can be represented as follows: 

'i + j \ p i+ j  _ (sin O) i+ j  

where as before j = 0 for a cylinder and j = i for a sphere. 

2 4 - i  2 + 1  p - -  l ( s in  O)~+j, ~ - - - - ~  cosO, ~ = t §  

we o b t a i n  t h e  f o l l o w i n g  e x p a n s i o n  o f  t h e  t y p e  ( 4 . 1 ) :  

(4.2) -~n~ ~,(i~J-2)<~+J) [~ I~+~! ~ ]-<~/-~)<i+J)+ .... 
' 2 ( 2 q - ] ) ~  t " ( 2 q - ] ) 2 ~ z  J 

By defining ~ and n in the form 
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The operators of differentiation with respect to ~ and P are expressed by standard means 
in the form of linear combinations of differentiation operators with respect to $ and q, where 
the coefficients in these combinations (8~/8r etc.) are evaluated from a system of linear 
equations obtained because of differentiating (4.2) with respect to r and P. 

Using I:he mentioned operator equations, the obvious relations 

U=lv~l=~-- j~]2+is inO+O(8) ,  (psinO) 2 j = s i n 2 j O + O ( e ) ,  

and the per1:urbation method, we have from (2.2) for the first member of the series (4.1) af- 
ter calculations 

[ ( . ) r  [ / 1 @ ]  '~211/218~,g(0) O~ (~ t - - ~  " I ' 1'2 2 - - 7  t - -  
0 ~ l = i - -  ~ = ~  ] 2 t~ - ]  \ ~ - ] j  J o-7" (4.3) 

Introducing the new variable 

r. " " , 7~ 2 = ]  1 - -  l ~ - l ~  2 I/2 d ~ - -  2 (sinO) 1+2j i - -  :': 2 - - ]  t =  t 1 - -  2_i_.~2~ l~--~-~--~]  " l - -  2 t + ]  sinO dO, (4 .4)  
-(2+.i)/(i+,~) o 

we obtain a simple parabolic equation from (4.3), 

&(%Ot = O~(~ :, ( 4 . 5 )  

whose solution should satisfy some initial condition at t = 0 (i.e., at the point 0 = w of 
the incoming stream, in addition to the boundary condition at the body surface and the condi- 
tion at infinity). The condition To (t = 0) = T= is ordinarily used. 

As a result of the solution of (4.5) under the mentioned conditions, we obtain the fol- 
lowing asymptotic representation for the solution of the first boundary-value problem: 

t 

T(O)=r=erf '?] /~ '  - t' 4 ( t _ r . ) j d t ' .  (4.6) 

For the  second boundary-value problem, we have instead of (4.6) 
! 

@~ T~-- I i Q ( t ' ) "  . [ 4(tl]2 ] - - t ' )  ] ~ 0 (t--t ')l/2 exp dt'. 

The variables t and n are defined by the relations presented above and To(t) and Q(t) are 
functions defined in terms of values of the temperature and the normal heat-flux density com- 
ponent given on the body surface after they have been substituted into the last values of the 
argument 8 expressed in terms of t in conformity with (4.4) 

Distributions of the ratio between the local and the mean values of the Nusselt number 
over the surface are presented in Fig. 2a and b for an isothermal cylinder and an isothermal 
sphere, respectively, for different values of Y2. It is seen that the presence of convective 
heat disperr results in a noticeable change in these distributions as compared to the dis- 
tributions characteristic for the situations where there is only molecular transfer (Y2 = 0). 

a 

o ~/2 o 

b 

S 
~2=~o \ 

B 
~;/2 

Fig. 2 
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In particular, the maximum heat elimination is shifted from the domain of the incoming stream 
down along the streamlined surface where the local filtration rate (and therefore, thecoef- 
ficient of transverse convective dispersion also) is higher. Analogous curves are presented 
in Fig. 3a and b for a cylinder and sphere, respectively, under the condition that a uniformly 
distributed heat flux is given on their surfaces (the notation is the same as in Fig. 2). 

Let us note that results analogous to those presented in Fig. 2 and 3 for y2 = Ohave 
been obtained earlier in [18, 19] in application to problems on the heat transfer from a cylin- 
der and sphere with fluids characterized by low Prandtl numbers, when the applicability of 
the potential flow model is due to the fact that the dynamic boundary layer is embedded in 
the thermal layer so that this latter lies principally in the inviscid flow domain. Satis- 
factory correspondence between the theoretical results from [18] and the experimental data 
from [20] indicates indirectly the adequacy of the theory developed above even for 72 # 0. 

In conclusion, let us note the fundamental conditions for applicability of the theory: 
smallness of the structural scale of the granular layer as compared to the body characteris- 
tic dimension, insignificant influence of the contact conductivity on the total heat flux in 
the granular layer, and absence of substantial heat sources and sinks. Moreover, the valid- 
ity of the results obtained in the limit case Pe § ~ is spoiled for very large Pe when the 
thermal boundary-layer thickness becomes commensurate with Z and it is necessary to take ac- 
count of the difference in the properties of the thin near-surface layer and the effective 
properties of the granular medium far from the body even in the case when L >> I and there 
is not contact heat transfer. 

We spoke above only about heat transfer, but all the results obtained are equally valid 
for the mass transfer of an impurity. 
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EFFECT OF ~:E AXIAL COMPONENT OF THE HEAT FLUX ON SOLIDIFCATION OF 

A METAL WITH CONTINUOUS CASTING 

A. N. Cherepanov UDC 669-147 

In many pieces of work devoted to the theory of the solidification of a metal with con- 
tinuous casting, as a rule, the axial component of the heat flux is neglected and an approxi- 
mate equation of thermal conductivity with constant thermophysical parameters of the metal is 
considered [1-5]. The present article, on the basis of an exact equation of the thermal con- 
ductivity, considers the process of the solidifica::ion of a continuous ingot, with an arbi- 
trary dependence of the thermophysical parameters of the metal on the temperature. From an 
analysis of the self-similar solution found, a condition is obtained, with which an approxi- 
mate consideration of the problem without taking account of the axial component of the heat 
flux is valid. As an example, let us examine the process of the solidification of a flat 
aluminum ingot. 

We shall postulate that a flat ingot with a thickness of 2x0 moves along the Z axis with 
a constant velocity v. Here we assume that the temperature of the melt (the liquid phase) is 
equal to the crystallization temperature Tcr. 

The equation determining the distribution of the temperature T in the solid phase under 
fully established conditions has the form 

UC V ~ 

w h e r e  t h e  v o l u m e t r i c  h e a t  c a p a c i t y  c V a n d  t h e  t h e r m a l  c o n d u c t i v i t y  X d e p e n d  on t h e  t e m p e r a -  
c u r e  T. 

We w r i t e  t h e  b o u n d a r y  c o n d i t i o n  a t  t h e  c o o l e d  s u r f a c e  o f  t h e  i n g o t  i n  t h e  f o r m  

, O T  x : = x o  ~,-= = q (z) ,  ( 2 )  O.C 

w h e r e  q ( z )  i s  t h e  l a w  o f  h e a c  r e m o v a l ,  w h o s e  f o r m  w i l I  be  d e t e r m i n e d  b e l o w .  S p e c i f i c a Z l y ,  i f  
t h e  h e a t  r e m o v a l  c a k e s  p l a c e  a c c o r d i n g  t o  t h e  N e w t o n - - R a j c h m a n  l a w .  T h e n ,  we s e t  

(~) = t~ (z)  [~  I.~=.~o - r~, (z)], (3) 
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